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Introduction

• A grammar is a set of rules by which the valid 
sentences in a language are constructed.

• Every language either that is natural language or 
artificial language have a certain grammar that 
helps in constructing the valid sentences in that 
language.

• In natural languages, invalid sentences violating 
the grammatical rules can be constructed and still 
they are understandable.

• But, this in not true in case of computer 
programming languages.
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Example

• Some of the rules of English grammar are these:
1. A sentence can be a subject followed by a predicate.
2. A subject can be a noun-phrase.
3. A noun-phrase can be an adjective followed by a noun-

phrase.
4. A noun-phrase can be an article followed by a noun-phrase.
5. A noun-phrase can be a noun.
6. A predicate can be a verb followed by a noun-phrase.
7. A noun can be : apple, bear, cat, dog.
8. A verb can be : eats, follows, gets, hugs.
9. A adjective can be : itchy, jumpy.
10. An article can be : a, an, the. 
11. A predicate can be a verb.

4

Example

• Now if have to form the sentence:
The itchy bear hugs the jumpy dog.

• The sequence of application of the grammar rules to 
generated the above sentence is as follows:

1. Sentence →subject predicate Rule 1
2. →noun-phrase predicate Rule 2
3. →noun-phrase verb noun-phrase Rule 6
4. →article noun-phrase verb noun-phrase Rule 4
5. →article adjective noun-phrase verb noun-phrase Rule 3
6. →article adjective noun verb noun-phrase Rule 5
7. →article adjective noun verb article noun-phrase Rule 4
8. → article adjective noun verb article adjective noun-phrase    Rule 3
9. → article adjective noun verb article adjective noun Rule 5
10. → The adjective noun verb article adjective noun Rule 10
11. → The itchy noun verb article adjective noun Rule 9 
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Example
12. → The itchy bear verb article adjective noun Rule 7
13. → The itchy bear hugs article adjective noun Rule 8
14. → The itchy bear hugs the  adjective noun Rule 10
15. → The itchy bear hugs the  jumpy noun Rule 9
16. → The itchy bear hugs the  jumpy dog Rule 7

• The arrows indicates that a substitution was made according to the 
rules of grammar stated above.

• What we did:
– We started with the initial symbol sentence.
– We then applied the rules for producing the given sentence.
– We then replaced the grammar words with the vocabulary words and 

hence get the required sentence.

• The words that cannot be replaced by anything are called terminal .
• The words that can be replaced with by other words are called non-

terminals.
• The sequence of application of the rules that produces the finished 

string of terminals from the starting symbol is called a derivation.

6

Syntax and Semantics

• Syntax is concerned with the grammatical 
structure of the sentences of the language.
– Grammatical structure means the set of rules that are 

needed to construct valid sentences in the language.

• Semantics is concerned with the meaning of the 
sentence generated as a result of application of the 
grammatical rules.

• Sometimes, a sentence will be syntactically 
correct but semantically it will be incorrect.

• For example in the previous grammar we have:
– Sentence  noun predicate.
– Predicate  verb.



3/22/2020

4

7

Syntax and Semantics

• By using this grammar, we can construct 
sentences like:
– Birds sings.

– Wednesday sings.

– Coal mines sings.

• The first sentence is both synthetically and 
semantically correct.

• But, the last two are synthetically correct but 
semantically incorrect.

• For a sentence to be valid, it should be both 
synthetically and semantically correct.

8

Example

• Lets write grammar for valid arithmetic expressions.
– Start   AE

– AE     (AE + AE)

– AE     (AE – AE)

– AE     (AE * AE)

– AE     (AE / AE)

– AE     (AE ** AE)

– AE     (AE)

– AE     – (AE)

– AE     Any-Number

– Any-Number   First-Digit

– First-Digit   First-Digit Other-Digit

– First-Digit   0 1 2 3 4 5 6 7 8 9

– Other-Digit   0 1 2 3 4 5 6 7 8 9

• Now using this 
grammar derive the 
expression:

1. (4-5)

2. ((5+4)*4)

3. ((9+5)*(8+2))
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Grammar

• A grammar can be represented by four tuple:

G = ( Σ, N, S, P)
– Σ is a finite non-empty set called alphabets.

• The elements of Σ is called terminals and usually represented by 
lower-case letters .i.e. a, b, c etc.

– N is a finite non-empty set of symbols such that N ∩ Σ =Ǿ.
• The elements of N is called non-terminals are represented by 

uppercase letters .i.e. A, B, C etc.

– S is a distinguished element of N called start symbol such 
that S € N.

– P is the set of production rules or substitutions rules.
• A production rule is of the form:

Non-Terminal  finite set of Terminals and Non-Terminals.

10

Types of Grammar

• There are four types of grammars and is 
commonly called Chomsky hierarchy.
– Type – 0 grammar.

– Type – 1 grammar.

– Type – 2 grammar.

– Type – 3 grammar.
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Type -0 grammar

• Type – 0 grammar is also called phrase structure grammar 
or un-restricted grammar.

• It is of four tuple (Σ, N, S, P).

• A production rule in an un-restricted grammar is of the 
form:

U → V
– Where U and V are strings of terminals, non-terminals or both of 

them.

– Only restriction is that U ≠ ε.

– These production allows for a completely replacement of one string 
‘U’ by another ‘V’.

• The language generated by type-0 grammar is called type-0 
language.

12

Example

• Let
Σ = {a, c, d}

N = {A, B, C}

S  = {A}

and P is:

A →  aBCc

aB → cad

Bc → aBa

BCc → Bcc

Cc → ε

Now to derive cad:

1. S → aBCc

2. aBCc → cadCc

3. cadCc → cad

Now to derive acadac

1. S → aBCc

2. aBCc →aBcc

3. aBcc → aaBac

4. aaBac → acadac
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Type-1 grammar

• It is called context-sensitive grammar.

• It is also of four tuple (Σ, N, S, P).

• A production rule of the following form:
ά A β → ά σ β

– Where A is a non-terminal and σ ≠ ε is any non-empty 
string of terminals or non-terminals or both.

– ά and β may either terminals, non-terminals or both.

– The idea is that we may replace the non-terminal A by 
σ but only if A is surrounded by in the context of ά
and β.

14

Type – 2 grammar

• It is also called context-free grammar (CFG).

• It is also of four tuple (Σ, N, S, P).

• A production rule of the following form:
A  →  σ

– Where A is a single non-terminal symbol and σ is any 
string of terminals or non-terminals or both.

• This is the most suitable grammar for computer 
languages and almost all computer programming 
languages are CFG.
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Type – 3 grammar

• It is also called regular grammar or linear 
grammar.

• It is also of four tuple (Σ, N, S, P).

• In this type of grammar, we replace a single non-
terminal with either a single terminal, a single 
terminal with a single non-terminal or ε.

• There are two types of this grammar.
– Right linear or Right regular.

– Left linear or Left regular.

16

Right Linear

• A grammar G is said to be of the right linear if 
every one of its productions has one of the 
following form.

A → ε

A → aB

A → a

• Here A, B are non-terminals and ‘a’ is terminal.
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Left Linear

• A grammar G is said to be of the left linear if 
every one of its productions has one of the 
following form.

A → ε

A → Ba

A → a

• Here A, B are non-terminals and ‘a’ is terminal.

18

Context-free Language

• A language generated by a CFG is the set of all 
strings of terminals that can be produced from the 
start symbol S using the productions as 
substitutions.

• A language generated by a CFG is called context-
free language.
– It can also be said as the language defined by CFG or 

the language derived from the CFG or the language 
produced by the CFG.

• The language defined by a CFG can also be 
describe by a regular expression.
– This can also be said as the language defined by a RE 

can also be defined by a CFG.
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Example
• Let the only terminal be a.
• Let the production be:

Prod 1 S  aS
Prod 2 S  ε

• If we apply prod 1 six times and then apply prod 2, we 
generate the following:

S  aS
 aaS
 aaaS
 aaaaS
 aaaaaS
 aaaaaaS
 aaaaaa

• This is a derivation of a6 in this CFG.

20

Example

• The string an comes from n times application of 
prod 1 followed by one application of prod 2.

• If we apply prod 2 with out prod 1, we find that 
the null string is itself in the language of this 
CFG.

• Since the only terminal is a it is clear that no 
words outside of a* can possibly be generated.

• The language generated by this CFG is exactly a*.
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Example

• Let the terminal be a and b.
• Let the non-terminals be S, X and Y.
• Let the production rules be:

S  X
S  Y
X  ε
Y  aY
Y  bY
Y  a
Y  b

• The language generated by this CFG is (a|b)*.

22

Example

• Let the terminal be a and b.
• Let the non-terminals be S and X.
• Let the production rules be:

S  XaaX
X  aX
X  bX
X  ε

• The language generated by this CFG is 
(a|b)*aa(a|b)*.
– The language of all words with at least a double a in 

them somewhere.
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RE and CFG

• Every language that can be described by a RE can 
also be described by a CFG.

• It is rather difficult to write grammar directly.
• FA can be converted into corresponding grammar.
• To convert FA to grammar, the following rules 

should be used.
– For each state “i” of the FA create a non-terminal 

symbol “A”.
– If a state “i” has a transition to state “j” on a symbol 

“a” .i.e. (i, a) = j, then introduce a production rule of 
the following form.

Ai  aAj

24

RE and CFG

– If state “i” goes to state “j” on input “ε”, then introduce 
a production rule of the form.

Ai  Aj

– If state “i” is an accepting state, then introduce a 
production rule of the form.

Ai  ε

– If state “i” is the start state, then Ai is the start symbol 
(non-terminal) of the grammar.
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Example

• Regular expression for the FA is (a|b)*a(bb)*.
• Its corresponding grammar will be:

Σ = {a, b}
N = {A1, A2, A3, A4}
S = {A1}
The production rules will be:

1 2 3 4

a

a

b

b b

ε

ε

26

Example

A1  aA1

A1  bA1

A1  aA2

A2  bA3

A2  A4

A3  bA4

A4  A2

A4  ε
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Example

• Consturct FA and grammar for the following RE.

(a|b)* bbb (a|b)*

28

Sentential and Sentence form of a Grammar

• A sentential form of a grammar G is any string Xi
of symbols, such that Xi is set of terminals plus 
non-terminals or only non-terminals. Such that              

Xi Є  Σ U N
– If S  ά, where ά contains of non-terminal, then we 

can say that ά is a sentential form of grammar.

• A sentential form of a grammar G that cannot be 
further derived or expended .i.e. a sentential form 
of a grammar G  that consists of terminal symbols 
only is called sentence form of grammar.
– If w Є L(G) and S  w, where w is denotes the string 

contain only terminals symbols then w is called a 
sentence.

*

*
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Types of Derivation

• Replacing of a non-terminal in the current state 
with its corresponding production rule in the 
grammar in order to obtained the required string 
is called derivation.

• Two types of derivation.
– Left most derivation.

– Right most derivation.

30

Types of Derivation

• Left-most Derivation.
– The derivation in which only the left-most non-

terminal in any sentential form is expanded at each step 
is called left most derivation.

• Right-most Derivation.
– The derivation in which only the right-most non-

terminal in any sentential form is expanded at each step 
is called left most derivation.
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Example

• Consider the following grammar.

E  E + T

E  T

T  T * F

T  F

F  ( E )

F  a

• No derive ( a + a ) by using both left-most and 
right-most derivations.

32

Using Right-most Derivation

E  ( E )

 ( E + T )

 ( E + F )

 ( E + a )

 ( T + a )

 ( F + a )

 ( a + a )
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Using Left-most Derivation

E  ( E )

 ( E + T )

 ( T + T )

 ( F + T )

 ( a + T )

 ( a + T )

 ( a + a )

34

Example

• Derive the string ( a + a * a ) by using the 
grammar stated in the previous slides by using 
both left-most and right-most derivation.
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Backus-Naur Form
• BNF stands for Backus-Naur Form or Backus Normal Form.
• A meta language is a language that is used to describe another 

language.
• BNF is a meta language (formal notations) for programming 

languages syntax.
• A production is a rule relating to a pair of strings, say ά and β, 

specifying how one may be transformed into the other. This may be 
denoted 

ά  β.
• For simple theoretical grammars, upper case letters are used for non-

terminals and lower case letters are used for terminals.
• For more realistic grammars, such as those used to specify 

programming languages, the most common way of specifying 
productions is to use the notations invented by Backus commonly 
called BNF.

• These notations were first introduced by Backus for describing 
ALGOL 58.

• These notations were later modified slightly by Peter Naur for the 
description of ALGOL 60.

36

Backus-Naur Form

• In BNF:
– A non-terminal and terminal are usually given some 

descriptive names.

– Non-terminals symbols are written in angle brackets to 
distinguish it from a terminal symbol.

– If there are multiple definitions for the same non-
terminal symbol, then they can be written as single 
rule, separated from each by using (|) vertical bar 
which means logical OR.
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Example

• Derive the “The sleepy boy listens” by using the                 
above grammar.

38

Parse Trees
• A grammar naturally describe the hierarchical syntactic 

structure of the sentences of the language they define.
• The hierarchical structure is called Parse Tree, Syntax Tree, 

Derivation Tree or Production Tree..
• To draw a parse tree for a sentence generated by a grammar:

– We start with the start symbol “S”.
– Every time we used to replace a non-terminal by a string, 

we draw downward lines from the non-terminal to each 
character (terminal and non-terminal) in the production 
rule.

– These replacements are continued until we label the 
downward lines with terminal symbols only (leaf nodes).

– Every internal node of a parse tree is labeled with a non-
terminal symbol and leaf nodes are labeled with terminal 
symbols.
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Example

<assign>   <id>  =  <expr>
<id>          A | B | C
<expr>      <id> + <expr>

|  <id> * <expr>
|  (<expr>)
| <id>

• Now to derive  and also draw parse tree for the 
following expression by using the above grammar.

A = B * ( A + C )
• Also draw parse tree for the sentence derived in 

slide # 39.

40

Problems of a CFG

• Three types of problems are mainly faced in a 
CFG.
– Ambiguity.

– Left Recursion.

– Common Prefixes.

• Three problems must be removed from a CFG, 
otherwise the grammar will not work accurately.
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Ambiguity

• An ambiguous grammar is one that:
– Produces more than one parse trees for the same 

sentence.

– Produces more than one leftmost derivations or 
rightmost derivations for the same sentence.

• A grammar becomes ambiguous when a single 
non-terminal appears twice or more times on the 
L.H.S of the production rules in the grammar.

• If more than one parse trees can be produced for a 
sentence; then the compiler would not be able to 
generate the code uniquely.

42

Example

• Consider the following grammar.

<assign>   <id>  =  <expr>

<id>          A | B | C

<expr>      <expr> + <expr>

|  <expr> * <expr>

|  (<expr>)

| <id>

• Now show that this grammar is ambigous for the 
sentence A = B + C * A.
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Elimination of Ambiguity

• Consider the following grammar.

<if_stmt>   if <logic_expr> then <stmt>

|  if <logic_expr> then <stmt> else <stmt>

<stmt>   <if_stmt>

• Now to show that this grammar is ambiguous for the following 
sentence.

if <logic_expr> then if <logic_exper> then <stmt> else <stmt>

• Now to eliminate ambiguity from the above grammar, we have to 
rewrite the above grammar.

44

Elimination of Ambiguity

• To rewrite unambiguous grammar, we have to 
following the following rule.
– The rule for if statement in most languages is that an 

else clause, when present, is matched with the nearest 
previous unmatched then.

– Therefore, between a then and its matching else, there 
cannot be an if statement without an else.

– So for this situation, statements must be distinguished 
between those that are matched and those that are 
unmatched.

– Where unmatched statements are else – less ifs.
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Elimination of Ambiguity

• So the unambiguous grammar will be:

<stmt>  <matched> | <unmatched>

<matched>  if <logic_expr> then <matched> else <matched>

| any non-if statement

<unmatched>  if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

• Now try this out on the previous sentence.

46

Left Recursion

• A grammar is said to be left recursive, if it has a a non-
terminal ‘A’ such that there is a derivation         

A  Aά
for some string x.

• When a grammar rule has its L.H.S also appearing at the 
beginning of its R.H.S, the rule/grammar is said to be left 
recursive.

• For example
S  Sa

Now, replacing S by Sa we get Saa, then Saaa and then 
Saaaa and so on.

• Top-down parsing method cannot handle left-recursive 
grammar, so it has to be eliminated.

*
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Left – Recursive Removal

• Consider the following grammar.

A  Aά |  β

This is a left recursive grammar and it can be 
removed by replacing it with the following 
productions.

A  βA/

A/  άA/ | ε

48

Example

• Consider the grammar.

S  Ab | b

A  Ac | Sd | ε

• This grammar can be expanded as:

S  Ab | b

A  Ac | Abd | bd | ε

• After removing left – recursion we get.

S  Ab | b

A  bdA/ | εA/

A/  cA/ | bdA/ | ε
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Example

• Consider the following left – recursive grammar.

E  E + T   |   T

• In this case

+ T  =  ά

T     =  β

• By eliminating left – recursion, it can be written 
as:

E  TE/

E/  +TE/ | ε

50

Common Prefixes

• When a grammar has two or more productions 
with the same non-terminal of the L.H.S and the  
same prefixes on their R.H.S but different 
suffixes.

• Consider the following grammar:

A  άβ1

A  άβ2

– So, it is not clear that which of the two alternative 
productions is to be used to expand non – terminal ‘A’.

• The removal of common prefixes is called left 
factoring,
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Common Prefixes Removal

• Consider the following grammar:

A  άβ1

A  άβ2

• After left factoring, it will be as:

A  άA/

A/  β1 | β2

52

Example

• Consider the following grammar:

S  iEtS | iEtSeS | a

E  b

• After left factoring, we get:

S  iEtSS/ | a

S/  eS | ε

E  b
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Operator Precedence

• Grammar is used to create parse tree for a sentence.
• Therefore, parse tree is used to determine the 

meaning of the sentence.
• In case of mathematical expression:

– An operator in an arithmetic expression that is generated 
lower in the parse tree has precedence over an operator 
produced higher up in the tree.

• If we consider the grammar shown in slide # 44 and 
create parse trees for the given expressions.
– We will find that in one tree the multiplication operator 

is generated lower in the tree, indicating that it has 
precedence over the addition operator in the expression.

– The second parse tree indicates just the opposite.

54

Operator Precedence

• Therefore an ambiguous grammar can also create the 
problem of operator precedence.

• To maintain the operator precedence, we have to 
restructure the grammar.

• We have to write the grammar in such away so that can 
easily reflect the operator precedence.

• In case of the grammar shown on slide # 44.
– A grammar can be written to separate the addition and 

multiplication operators so they are consistently in a higher-to-
lower ordering, respectively, in the parse tree.

– This ordering can be maintained regardless of the order in which 
the operators appear in an expression.

– The correct ordering is specified by using separate rules for the 
operands of the operator that have different precedence.

– This requires additional non-terminals and some new rules.
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Operator Precedence

<assign>   <id>  =  <expr>

<id>          A | B | C

<expr>      <term> + <expr>

|  <term> - <expr>

|  <term>

<term>      < factor >  * <term >

|  < factor >  / <term>

|  <factor>

<factor>    ( <expr> )

|  <id>

56

The Total – Language Tree

• A total – language tree shows the generation of all 
the words in the language of CFG simultaneously in 
one big (possibly infinite) tree.

• For a given CFG, total – language tree is:
– Start with the start symbol S as its root and whose nodes 

are working strings of terminals and non-terminals.

– The descendent of each node are all the possible results of 
applying every production of the non-terminals in the 
node, one at a time.

– A string of all terminals is the terminal node in the tree.

– The resultant tree is called the total language tree of the 
CFG.
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The Total – Language Tree
• Example : For the CFG

S  aa | bX | aXX
X  ab | b

• The total language tree is:

• This total language has only seven different words.
• Four of its words { abb, aabb, abab, aabab } have two different possible 

derivations.

58

Class Work
• Find a CFG for each of the languages defined by the following regular 

expressions.
1. aa*bb*
2. (a|b)* a (a|b)* a (a|b)*
3. b* a (a|b)* a b*

• Consider the CFG

S  aX

X  aX | bX | ε

What is the language this CFG generates.
• Consider the CFG

S  XaXaX
X  aX | bX | ε

What is the language this CFG generates.
• Consider the CFG 

S  aS | bb
Prove that this grammar generates the language defined by the RE a*bb.
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• End of Chapter # 4
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