

Introduction

- A grammar is a set of rules by which the valid sentences in a language are constructed.
- Every language either that is natural language or artificial language have a certain grammar that helps in constructing the valid sentences in that language.
- In natural languages, invalid sentences violating the grammatical rules can be constructed and still they are understandable.
- But, this in not true in case of computer programming languages.

Example

- Some of the rules of English grammar are these:

1. A sentence can be a subject followed by a predicate.
2. A subject can be a noun-phrase.
3. A noun-phrase can be an adjective followed by a nounphrase.
4. A noun-phrase can be an article followed by a noun-phrase.
5. A noun-phrase can be a noun.
6. A predicate can be a verb followed by a noun-phrase.
7. A noun can be : apple, bear, cat, dog.
8. A verb can be : eats, follows, gets, hugs.
9. A adjective can be : itchy, jumpy.
10. An article can be : a, an, the

3

Example

- Now if have to form the sentence: The itchy bear hugs the jumpy dog.
- The sequence of application of the grammar rules to generated the above sentence is as follows:

Example

12. \rightarrow The itchy bear verb article adjective noun
13. \rightarrow The itchy bear hugs article adjective noun
14. \rightarrow The itchy bear hugs the adjective noun

Rule 7
15. \rightarrow The itchy bear hugs the jumpy noun

Rule 8
Rule 10
16. \rightarrow The itchy bear hugs the jumpy dog

- The arrows indicates that a substitution was made according to the rules of grammar stated above.
- What we did:
- We started with the initial symbol sentence.
- We then applied the rules for producing the given sentence.
- We then replaced the grammar words with the vocabulary words and hence get the required sentence.
- The words that cannot be replaced by anything are called terminal .
- The words that can be replaced with by other words are called nonterminals. The sequence of application of the rules that produces the finished string of terminals from the starting symbol is called a derivation.

Syntax and Semantics

- Syntax is concerned with the grammatical structure of the sentences of the language.
- Grammatical structure means the set of rules that are needed to construct valid sentences in the language.
- Semantics is concerned with the meaning of the sentence generated as a result of application of the grammatical rules.
- Sometimes, a sentence will be syntactically correct but semantically it will be incorrect.
- For example in the previous grammar we have:
- Sentence \rightarrow noun predicate.
- Predicate \rightarrow verb.

Syntax and Semantics

- By using this grammar, we can construct sentences like:
- Birds sings.
- Wednesday sings.
- Coal mines sings.
- The first sentence is both synthetically and semantically correct.
- But, the last two are synthetically correct but semantically incorrect.
- For a sentence to be valid, it should be both

Example

- Lets write grammar for valid arithmetic expressions.
- Start $\rightarrow \mathrm{AE}$
$-\mathrm{AE} \rightarrow$ (AE +AE$)$
$-\mathrm{AE} \rightarrow(\mathrm{AE}-\mathrm{AE})$
$-\mathrm{AE} \rightarrow$ (AE*AE)
- Now using this grammar derive the expression:
$-\mathrm{AE} \rightarrow(\mathrm{AE} / \mathrm{AE})$

1. $(4-5)$
$-\mathrm{AE} \rightarrow(\mathrm{AE} * * \mathrm{AE})$
2. $\left((5+4)^{\star} 4\right)$
$-\mathrm{AE} \rightarrow$ (AE)
3. $\left((9+5)^{\star}(8+2)\right)$
$-\mathrm{AE} \rightarrow-(\mathrm{AE})$
$-\mathrm{AE} \rightarrow$ Any-Number

- Any-Number \rightarrow First-Digit
- First-Digit \rightarrow First-Digit Other-Digit
- First-Digit $\rightarrow 0123456789$
- Other-Digit $\rightarrow 0123456789$

Grammar

- A grammar can be represented by four tuple: $\mathrm{G}=(\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P})$
$-\Sigma$ is a finite non-empty set called alphabets.
- The elements of Σ is called terminals and usually represented by lower-case letters i.e. a, b, c etc.
-N is a finite non-empty set of symbols such that $\mathrm{N} \cap \Sigma=$ Ǿ.
- The elements of N is called non-terminals are represented by uppercase letters i.e. A, B, C etc.
- S is a distinguished element of N called start symbol such that $\mathrm{S} € \mathrm{~N}$.
- P is the set of production rules or substitutions rules.
- A production rule is of the form:

Non-Terminal \rightarrow finite set of Terminals and Non-Terminals.

Type -0 grammar

- Type - 0 grammar is also called phrase structure grammar or un-restricted grammar.
- It is of four tuple ($\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P})$.
- A production rule in an un-restricted grammar is of the form:

$$
\mathrm{U} \rightarrow \mathrm{~V}
$$

- Where U and V are strings of terminals, non-terminals or both of
them.
- Only restriction is that $\mathrm{U} \neq \varepsilon$.
- These production allows for a completely replacement of one string ' U ' by another ' V '.
- The language generated by type-0 grammar is called type-0 language.

Example

- Let
$\Sigma=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{N}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\mathrm{S}=\{\mathrm{A}\}$
and P is:
Now to derive cad:

1. $S \rightarrow a B C c$
2. $\mathrm{aBCc} \rightarrow \mathrm{cadCc}$
3. $\operatorname{cad} \underline{C} \mathrm{c} \rightarrow \mathrm{cad}$

A	\rightarrow	aBCc	Now to derive acadac
aB	\rightarrow	cad	1. $S \rightarrow a B C c$
Bc	\rightarrow	aBa	2. $\mathrm{aBCc} \rightarrow \mathrm{aBcc}$
BCc	\rightarrow	Bcc	3. $\mathrm{aBcc} \rightarrow a \mathrm{aBac}$
Cc	\rightarrow	ε	4. $a \underline{a B a c} \rightarrow \mathrm{acadac}$

Type-1 grammar

- It is called context-sensitive grammar.
- It is also of four tuple ($\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P}$).
- A production rule of the following form:

$$
\dot{\alpha} \mathrm{A} \beta \rightarrow \dot{\alpha} \sigma \beta
$$

- Where A is a non-terminal and $\sigma \neq \varepsilon$ is any non-empty string of terminals or non-terminals or both.
- α and β may either terminals, non-terminals or both.
- The idea is that we may replace the non-terminal A by σ but only if A is surrounded by in the context of α and β.

Type - 2 grammar

- It is also called context-free grammar (CFG).
- It is also of four tuple ($\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P}$).
- A production rule of the following form:

$$
\mathrm{A} \rightarrow \sigma
$$

- Where A is a single non-terminal symbol and σ is any string of terminals or non-terminals or both.
- This is the most suitable grammar for computer languages and almost all computer programming languages are CFG.

Type - 3 grammar

- It is also called regular grammar or linear grammar.
- It is also of four tuple ($\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P}$).
- In this type of grammar, we replace a single nonterminal with either a single terminal, a single terminal with a single non-terminal or ε.
- There are two types of this grammar.
- Right linear or Right regular.
- Left linear or Left regular.

-

Right Linear

- A grammar G is said to be of the right linear if every one of its productions has one of the following form.

A	\rightarrow	ε
A	\rightarrow	aB
A	\rightarrow	a

- Here A, B are non-terminals and ' a ' is terminal.

Left Linear

- A grammar G is said to be of the left linear if every one of its productions has one of the following form.

A	\rightarrow	ε
A	\rightarrow	Ba
A	\rightarrow	a

- Here A, B are non-terminals and ' a ' is terminal.

Context-free Language

- A language generated by a CFG is the set of all strings of terminals that can be produced from the start symbol S using the productions as substitutions.
- A language generated by a CFG is called contextfree language.
- It can also be said as the language defined by CFG or the language derived from the CFG or the language produced by the CFG.
- The language defined by a CFG can also be describe by a regular expression.
- This can also be said as the language defined by a RE can also be defined by a CFG.

Example

- Let the only terminal be a.
- Let the production be:

Prod $1 \mathrm{~S} \quad \rightarrow \quad \mathrm{aS}$
Prod $2 \mathrm{~S} \quad \rightarrow \quad \varepsilon$

- If we apply prod 1 six times and then apply prod 2 , we generate the following:

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow & \text { aS } \\
& \rightarrow & \text { aaS } \\
& \rightarrow & \text { aaaS } \\
& \rightarrow & \text { aaaaS } \\
& \rightarrow & \text { aaaaaS } \\
& \rightarrow & \text { aaaaaaS } \\
& \rightarrow & \text { aaaaaa }
\end{array}
$$

Example

- The string a^{n} comes from n times application of prod 1 followed by one application of prod 2.
- If we apply prod 2 with out prod 1 , we find that the null string is itself in the language of this CFG.
- Since the only terminal is a it is clear that no words outside of a^{*} can possibly be generated.
- The language generated by this CFG is exactly a*.

Example

- Let the terminal be a and b.
- Let the non-terminals be S, X and Y.
- Let the production rules be:

S	\rightarrow	X
S	\rightarrow	Y
X	\rightarrow	ε
Y	\rightarrow	aY
Y	\rightarrow	bY
Y	\rightarrow	a
Y	\rightarrow	b

Example

- Let the terminal be a and b .
- Let the non-terminals be S and X .
- Let the production rules be:

S	\rightarrow	$X a a X$
X	\rightarrow	$a X$
X	\rightarrow	$b X$
X	\rightarrow	ε

- The language generated by this CFG is (a|b)*aa(a|b)*.
- The language of all words with at least a double a in them somewhere.

RE and CFG

- Every language that can be described by a RE can also be described by a CFG.
- It is rather difficult to write grammar directly.
- FA can be converted into corresponding grammar.
- To convert FA to grammar, the following rules should be used.
- For each state "i" of the FA create a non-terminal symbol "A".
- If a state " i " has a transition to state " j " on a symbol "a" .i.e. $\delta(\mathrm{i}, \mathrm{a})=\mathrm{j}$, then introduce a production rule of the following form.

$$
\mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{aA}_{\mathrm{j}}
$$

RE and CFG

- If state " i " goes to state " j " on input " ε ", then introduce a production rule of the form.

$$
\mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{~A}_{\mathrm{j}}
$$

- If state " i " is an accepting state, then introduce a production rule of the form.

$$
\mathrm{A}_{\mathrm{i}} \rightarrow \varepsilon
$$

- If state " i " is the start state, then A_{i} is the start symbol (non-terminal) of the grammar.

Example

- Regular expression for the FA is (a|b)*a(bb)*.
- Its corresponding grammar will be:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{N}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \\
& \mathrm{S}=\left\{\mathrm{A}_{1}\right\}
\end{aligned}
$$

The production rules will be:

Example

- Consturct FA and grammar for the following RE.

$$
(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{bbb}(\mathrm{a} \mid \mathrm{b})^{*}
$$

Sentential and Sentence form of a Grammar

- A sentential form of a grammar G is any string X_{i} of symbols, such that X_{i} is set of terminals plus non-terminals or only non-terminals. Such that

$$
X_{i} \in \Sigma U N
$$

- If $\mathrm{S} \rightarrow \dot{\alpha}$, where $\dot{\alpha}$ contains of non-terminal, then we can say that α is a sentential form of grammar.
- A sentential form of a grammar G that cannot be further derived or expended .i.e. a sentential form of a grammar G that consists of terminal symbols only is called sentence form of grammar.
- If $w \in \mathrm{~L}(\mathrm{G})$ and $\mathrm{S} \Rightarrow$, where w is denotes the string contain only terminals symbols then w is called a sentence.

Types of Derivation

- Replacing of a non-terminal in the current state with its corresponding production rule in the grammar in order to obtained the required string is called derivation.
- Two types of derivation.
- Left most derivation.
- Right most derivation.

.

Types of Derivation

- Left-most Derivation.
- The derivation in which only the left-most nonterminal in any sentential form is expanded at each step is called left most derivation.
- Right-most Derivation.
- The derivation in which only the right-most nonterminal in any sentential form is expanded at each step is called left most derivation.

Example

- Consider the following grammar.

E	\rightarrow	$\mathrm{E}+\mathrm{T}$
E	\rightarrow	T
T	\rightarrow	$\mathrm{T} * \mathrm{~F}$
T	\rightarrow	F
F	\rightarrow	(E)
F	\rightarrow	a

- No derive ($\mathrm{a}+\mathrm{a}$) by using both left-most and right-most derivations.

Example

- Derive the string ($a+a * a$) by using the grammar stated in the previous slides by using both left-most and right-most derivation.

Backus-Naur Form

- BNF stands for Backus-Naur Form or Backus Normal Form.
- A meta language is a language that is used to describe another language.
- BNF is a meta language (formal notations) for programming languages syntax.
- A production is a rule relating to a pair of strings, say α and β, specifying how one may be transformed into the other. This may be denoted
$\alpha \rightarrow \beta$.
- For simple theoretical grammars, upper case letters are used for nonterminals and lower case letters are used for terminals.
- For more realistic grammars, such as those used to specify programming languages, the most common way of specifying productions is to use the notations invented by Backus commonly called BNF.
- These notations were first introduced by Backus for describing ALGOL 58.
- These notations were later modified slightly by Peter Naur for the
description of ALGOL 60.

Backus-Naur Form

- In BNF:

- A non-terminal and terminal are usually given some descriptive names.
- Non-terminals symbols are written in angle brackets to distinguish it from a terminal symbol.
- If there are multiple definitions for the same nonterminal symbol, then they can be written as single rule, separated from each by using (\mid) vertical bar which means logical OR.

Parse Trees

- A grammar naturally describe the hierarchical syntactic structure of the sentences of the language they define.
- The hierarchical structure is called Parse Tree, Syntax Tree, Derivation Tree or Production Tree..
- To draw a parse tree for a sentence generated by a grammar:
- We start with the start symbol "S".
- Every time we used to replace a non-terminal by a string, we draw downward lines from the non-terminal to each character (terminal and non-terminal) in the production rule.
- These replacements are continued until we label the downward lines with terminal symbols only (leaf nodes).
- Every internal node of a parse tree is labeled with a nonterminal symbol and leaf nodes are labeled with terminal symbols.

Example

$$
\begin{array}{ll}
<\text { assign }>\rightarrow & <\text { id }>=<\text { expr }> \\
<\text { id }> & \rightarrow \\
\text { A }|\mathrm{B}| \mathrm{C} \\
\text { <expr> }> & <\text { id }>+ \text { eexpr }> \\
& \mid<\text { id }>*<\text { expr }> \\
& \mid(<\text { expr }>) \\
& \mid<\text { id }>
\end{array}
$$

- Now to derive and also draw parse tree for the following expression by using the above grammar.

$$
\mathrm{A}=\mathrm{B} *(\mathrm{~A}+\mathrm{C})
$$

- Also draw parse tree for the sentence derived in

Problems of a CFG

- Three types of problems are mainly faced in a CFG.
- Ambiguity.
- Left Recursion.
- Common Prefixes.
- Three problems must be removed from a CFG, otherwise the grammar will not work accurately.

Ambiguity

- An ambiguous grammar is one that:
- Produces more than one parse trees for the same sentence.
- Produces more than one leftmost derivations or rightmost derivations for the same sentence.
- A grammar becomes ambiguous when a single non-terminal appears twice or more times on the L.H.S of the production rules in the grammar.
- If more than one parse trees can be produced for a sentence; then the compiler would not be able to generate the code uniquely.

Example

- Consider the following grammar.

$$
\begin{array}{lll}
<\text { assign }> & \rightarrow & <\text { id }>=\text { <expr }> \\
<\text { id }> & \rightarrow & \mathrm{A}|\mathrm{~B}| \mathrm{C} \\
\text { <expr> } & \rightarrow & <\text { expr }>+ \text { <expr }> \\
& & \mid<\text { expr }>*<\text { expr }> \\
& & \mid(<\text { expr>) } \\
& \mid<\text { id> }>
\end{array}
$$

- Now show that this grammar is ambigous for the sentence $A=B+C * A$.

Elimination of Ambiguity

- Consider the following grammar.

- Now to show that this grammar is ambiguous for the following sentence.
if $<$ logic_expr> then if $<$ logic_exper> then $<$ stmt $>$ else $<$ stmt> $>$
- Now to eliminate ambiguity from the above grammar, we have to

Elimination of Ambiguity

- To rewrite unambiguous grammar, we have to following the following rule.
- The rule for if statement in most languages is that an else clause, when present, is matched with the nearest previous unmatched then.
- Therefore, between a then and its matching else, there cannot be an if statement without an else.
- So for this situation, statements must be distinguished between those that are matched and those that are unmatched.
- Where unmatched statements are else - less ifs.

Elimination of Ambiguity

- So the unambiguous grammar will be:
$<$ stmt> \rightarrow <matched> | <unmatched>
$<$ matched $>\rightarrow$ if $<$ logic_expr $>$ then $<$ matched $>$ else $<$ matched $>$ \mid any non-if statement
$<$ unmatched $>\rightarrow$ if $<$ logic_expr $>$ then $<$ stmt $>$ | if <logic_expr> then <matched> else <unmatched>
- Now try this out on the previous sentence.

Left Recursion

- A grammar is said to be left recursive, if it has a a nonterminal ' A ' such that there is a derivation

$$
\mathrm{A} \quad \stackrel{\star}{\rightarrow} \quad \mathrm{~A} \dot{1}
$$

for some string x .

- When a grammar rule has its L.H.S also appearing at the beginning of its R.H.S, the rule/grammar is said to be left recursive.
- For example

$$
\mathrm{S} \quad \rightarrow \quad \mathrm{Sa}
$$

Now, replacing S by $S a$ we get $S a a$, then Saaa and then Saaaa and so on.

- Top-down parsing method cannot handle left-recursive grammar, so it has to be eliminated.

Left - Recursive Removal

- Consider the following grammar.

$$
\mathrm{A} \quad \rightarrow \quad \mathrm{~A} \dot{\alpha} \mid \beta
$$

This is a left recursive grammar and it can be removed by replacing it with the following productions.

$$
\begin{array}{lll}
\mathrm{A} & \rightarrow & \beta \mathrm{~A}^{\prime} \\
\mathrm{A}^{\prime} & \rightarrow & \dot{\alpha}^{\prime} \mid \varepsilon
\end{array}
$$

Example

- Consider the grammar.

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow \mathrm{Ab} \mid \mathrm{b} \\
\mathrm{~A} & \rightarrow & \mathrm{Ac}|\mathrm{Sd}| \varepsilon
\end{array}
$$

- This grammar can be expanded as:

$$
\begin{aligned}
& \mathrm{S} \\
& \mathrm{~A}
\end{aligned} \rightarrow \mathrm{Ab}|\mathrm{~b}, \mathrm{Ac}| \mathrm{Abd}|\mathrm{bd}| \varepsilon .
$$

- After removing left - recursion we get.

$$
\mathrm{S} \rightarrow \mathrm{Ab} \mid \mathrm{b}
$$

$\mathrm{A} \rightarrow \mathrm{bdA}^{\prime} \mid \varepsilon \mathrm{A}^{\prime}$

Example

- Consider the following left - recursive grammar.

$$
\mathrm{E} \quad \rightarrow \quad \mathrm{E}+\mathrm{T} \mid \mathrm{T}
$$

- In this case

$$
\begin{aligned}
& +\mathrm{T}=\dot{\alpha} \\
& \mathrm{T}=\beta
\end{aligned}
$$

- By eliminating left - recursion, it can be written as:

$$
\begin{array}{lll}
\mathrm{E} & \rightarrow & \mathrm{TE}^{\prime} \\
\mathrm{E}^{\prime} & \rightarrow & +\mathrm{TE}^{\prime} \mid \varepsilon
\end{array}
$$

Common Prefixes Removal

- Consider the following grammar:

$$
\begin{array}{lll}
\mathrm{A} & \rightarrow & \dot{\alpha} \beta_{1} \\
\mathrm{~A} & \rightarrow & \dot{\alpha} \beta_{2}
\end{array}
$$

- After left factoring, it will be as:

$$
\begin{array}{lll}
\mathrm{A} & \rightarrow & \dot{\alpha} \mathrm{~A}^{\prime} \\
\mathrm{A}^{\prime} & \rightarrow & \beta_{1} \mid \beta_{2}
\end{array}
$$

Example

- Consider the following grammar:

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow & \mathrm{iEtS}|\mathrm{iEtSeS}| \mathrm{a} \\
\mathrm{E} & \rightarrow & \mathrm{~b}
\end{array}
$$

- After left factoring, we get:

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow & \mathrm{iEtSS} \\
\mathrm{~S}^{\prime} \mid \mathrm{a} & \rightarrow & \mathrm{eS} \mid \varepsilon \\
\mathrm{E} & \rightarrow & \mathrm{~b}
\end{array}
$$

Operator Precedence

- Grammar is used to create parse tree for a sentenc
- Therefore, parse tree is used to determine the meaning of the sentence.
- In case of mathematical expression:
- An operator in an arithmetic expression that is generated lower in the parse tree has precedence over an operator produced higher up in the tree.
- If we consider the grammar shown in slide \# 44 and create parse trees for the given expressions.
- We will find that in one tree the multiplication operator is generated lower in the tree, indicating that it has precedence over the addition operator in the expression. The second parse tree indicates just the opposite.

Operator Precedence

- Therefore an ambiguous grammar can also create the problem of operator precedence.
- To maintain the operator precedence, we have to restructure the grammar.
- We have to write the grammar in such away so that can easily reflect the operator precedence.
- In case of the grammar shown on slide \# 44.
- A grammar can be written to separate the addition and multiplication operators so they are consistently in a higher-tolower ordering, respectively, in the parse tree.
- This ordering can be maintained regardless of the order in which the operators appear in an expression.
- The correct ordering is specified by using separate rules for the operands of the operator that have different precedence.
- This requires additional non-terminals and some new rules.

The Total - Language Tree

- A total - language tree shows the generation of all the words in the language of CFG simultaneously in one big (possibly infinite) tree.
- For a given CFG, total - language tree is:
- Start with the start symbol S as its root and whose nodes are working strings of terminals and non-terminals.
- The descendent of each node are all the possible results of applying every production of the non-terminals in the node, one at a time.
- A string of all terminals is the terminal node in the tree.
- The resultant tree is called the total language tree of the CFG.

The Total - Language Tree

- Example : For the CFG

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow & \mathrm{aa}|\mathrm{bX}| \mathrm{aXX} \\
\mathrm{X} & \rightarrow & \mathrm{ab} \mid \mathrm{b}
\end{array}
$$

- The total language tree is:

Class Work

- Find a CFG for each of the languages defined by the following regular expressions.

1. $\mathrm{aa*}$ bb*
2. $(a \mid b)^{*} a(a \mid b)^{*} a(a b) *$
3. $b^{*} a(a \mid b)^{*} a b^{*}$

- Consider the CFG

S	\rightarrow	aX
X	\rightarrow	$\mathrm{aX}\|\mathrm{bX}\| \varepsilon$

What is the language this CFG generates.

- Consider the CFG

S	\rightarrow	XaXaX
X	\rightarrow	$\mathrm{aX}\|\mathrm{bX}\| \varepsilon$

What is the language this CFG generates.

- Consider the CFG
$\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{bb}$
Prove that this grammar generates the language defined by the RE a*bb.

