)

A

Chapter # 4
Context Free Grammar (CFG)

Dr. Shaukat Ali
Department of Computer Science %

iversi Peshawar

Introduction

* A grammar is a set of rules by which the valid
sentences in a language are constructed.

» Every language either that is natural language or
artificial language have a certain grammar that
helps in constructing the valid sentences in that
language.

 In natural languages, invalid sentences violating
the grammatical rules can be constructed and still
they are understandable.

 But, this in not true in case of computer
programming languages.

3/22/2020

Example

Some of the rules of English grammar are these:

1.

N N RS

A sentence can be a subject followed by a predicate.

A subject can be a noun-phrase.

A noun-phrase can be an adjective followed by a noun-

phrase.

A noun-phrase can be an article followed by a noun-phrase.

A noun-phrase can be a noun.

A predicate can be a verb followed by a noun-phrase.

A noun can be : apple, bear, cat, dog.
A verb can be : eats, follows, gets, hugs.
A adjective can be : itchy, jumpy.

10 An article can be : a, an, the.

1. A predicate can be a verb.

Example

Now if have to form the sentence:
The itchy bear hugs the jumpy dog.

The sequence of application of the grammar rules to

generated the above sentence is as follows:

1. Sentence —subject predicate Rule 1
2 —noun-phrase predicate Rule 2
3 —noun-phrase verb noun-phrase Rule 6
4 —article noun-phrase verb noun-phrase Rule 4

S. —article adjective noun-phrase verb noun-phrase Rule 3
6 —article adjective noun verb noun-phrase Rule 5
7 —article adjective noun verb article noun-phrase Rule 4
8 — article adjective noun verb article adjective noun-phrase Rule 3
9. — article adjective noun verb article adjective noun Rule 5
10. — The adjective noun verb article adjective noun Rule 10
11. — The itchy noun verb article adjective noun Rule 9

3/22/2020

Example

12. — The itchy bear verb article adjective noun Rule 7
13. — The itchy bear hugs article adjective noun Rule 8
14. — The itchy bear hugs the adjective noun Rule 10
15. — The itchy bear hugs the jumpy noun Rule 9
16. — The itchy bear hugs the jumpy dog Rule 7

. The arrows indicates that a substitution was made according to the
rules of grammar stated above.
. What we did:
— We started with the initial symbol sentence.
— We then applied the rules for producing the given sentence.
— We then replaced the grammar words with the vocabulary words and
hence get the required sentence.
. The words that cannot be replaced by anything are called terminal .
. The words that can be replaced with by other words are called non-
terminals.
0 The sequence of application of the rules that produces the finished
string of terminals from the starting symbol is called a derivation.

Syntax and Semantics

» Syntax is concerned with the grammatical
structure of the sentences of the language.
— Grammatical structure means the set of rules that are
needed to construct valid sentences in the language.
* Semantics is concerned with the meaning of the
sentence generated as a result of application of the
grammatical rules.

* Sometimes, a sentence will be syntactically
correct but semantically it will be incorrect.

* For example in the previous grammar we have:
— Sentence = noun predicate.
— Predicate = verb.

3/22/2020

Syntax and Semantics

By using this grammar, we can construct
sentences like:

— Birds sings.

— Wednesday sings.

— Coal mines sings.

 The first sentence is both synthetically and
semantically correct.

 But, the last two are synthetically correct but
semantically incorrect.

» For a sentence to be valid, it should be both
synthetically and semantically correct.

ay

Example

» Lets write grammar for valid arithmetic expressions.
— Start > AE
— AE > (AE+AE) + Now using this

grammar derive the

- AE > (AE-AE) expression:

- AE = (AE *AE) 1 (4-5)
- AE - (AE/AE)

~ AE - (AE ** AE) 2. ((5+474)

-~ AE > (AE) 3. ((9+5)*(8+2))
- AE > —(AE)

— AE - Any-Number

— Any-Number - First-Digit

— First-Digit - First-Digit Other-Digit

— First-Digit > 0123456789

@ Other-Digit > 0123456789

3/22/2020

Grammar

» A grammar can be represented by four tuple:
G=(%Z,N,S,P)

— X is a finite non-empty set called alphabets.

* The elements of X is called terminals and usually represented by
lower-case letters .i.e. a, b, ¢ etc.

— N is a finite non-empty set of symbols such that N N £ =3,

* The elements of N is called non-terminals are represented by
uppercase letters .i.e. A, B, C etc.

— S is a distinguished element of N called start symbol such
that S € N.

— P is the set of production rules or substitutions rules.
* A production rule is of the form:

@ Non-Terminal = finite set of Terminals and Non-Terminals.
9

Types of Grammar

» There are four types of grammars and is
commonly called Chomsky hierarchy.
— Type — 0 grammar.
— Type — 1 grammar.
— Type — 2 grammar.
— Type — 3 grammar.

& m

3/22/2020

3/22/2020

Type -0 grammar

* Type — 0 grammar is also called phrase structure grammar
or un-restricted grammar.

It is of four tuple (Z, N, S, P).

* A production rule in an un-restricted grammar is of the

form:
U—-V
— Where U and V are strings of terminals, non-terminals or both of
them.

— Only restriction is that U # ¢.

— These production allows for a completely replacement of one string
‘U’ by another ‘V’.

» The language generated by type-0 grammar is called type-0

language.
1
Example
* Let
T={a,c,d} Now to derive cad:
g = {A’} ’ 2. aBCc — cadCc
and P is: 3. cadCc — cad
A — aBCc Now to derive acadac
aB N cad 1. S—aBCc
Be N aBa 2. aBCc —aBcc
BCc — Bec 3. aBcc — aaBac
Ce - e 4. aaBac — acadac

& u

Type-1 grammar

* Itis called context-sensitive grammar.
* Itis also of four tuple (Z, N, S, P).

* A production rule of the following form:
G6AB—baop
— Where A is a non-terminal and ¢ # € is any non-empty
string of terminals or non-terminals or both.
— & and B may either terminals, non-terminals or both.

— The idea is that we may replace the non-terminal A by
o but only if A is surrounded by in the context of &
and .

ay

13

Type — 2 grammar

* It is also called context-free grammar (CFG).
It is also of four tuple (£, N, S, P).
» A production rule of the following form:

A —>oc

— Where A is a single non-terminal symbol and ¢ is any
string of terminals or non-terminals or both.

 This is the most suitable grammar for computer
languages and almost all computer programming
languages are CFG.

ay

14

3/22/2020

Type — 3 grammar

« Itis also called regular grammar or linear
grammar.

* Itis also of four tuple (Z, N, S, P).

* In this type of grammar, we replace a single non-
terminal with either a single terminal, a single
terminal with a single non-terminal or €.

 There are two types of this grammar.

— Right linear or Right regular.
— Left linear or Left regular.

ay

15

Right Linear

* A grammar G is said to be of the right linear if
every one of its productions has one of the
following form.

A — €
A — aB
A — a

* Here A, B are non-terminals and ‘a’ is terminal.

ay

16

3/22/2020

Left Linear

» A grammar G is said to be of the left linear if
every one of its productions has one of the
following form.

A — €
A — Ba
A — a

* Here A, B are non-terminals and ‘a’ is terminal.

& 1,

Context-free Language

* Alanguage generated by a CFG is the set of all
strings of terminals that can be produced from the
start symbol S using the productions as
substitutions.

* A language generated by a CFG is called context-
free language.

— It can also be said as the language defined by CFG or
the language derived from the CFG or the language
produced by the CFG.

* The language defined by a CFG can also be
describe by a regular expression.

— This can also be said as the language defined by a RE

can also be defined by a CFG.
I@i 18

3/22/2020

Example

* Let the only terminal be a.
Let the production be:
Prod 1 S > aS

Prod2 S > €

+ If we apply prod 1 six times and then apply prod 2, we
generate the following:

S

aS

aaS

aaaS
aaaaS
aaaaaS
aaaaaaS
aaaaaa
 This is a derivation of a° in this CFG.

B2 22 2 2\Z

19

Example

* The string a" comes from n times application of
prod 1 followed by one application of prod 2.

» Ifwe apply prod 2 with out prod 1, we find that
the null string is itself in the language of this
CFG.

 Since the only terminal is a it is clear that no
words outside of a* can possibly be generated.

ay

» The language generated by this CFG is exactly a*.

20

3/22/2020

10

Example

* Let the terminal be a and b.
* Let the non-terminals be S, X and Y.
* Let the production rules be:

S -> X
S 2> Y
X 2> ¢
Y 2> aY
Y 2> by
Y 2> a
Y - b

21

@%}The language generated by this CFG is (alb)*.

Example

* Let the terminal be a and b.
* Let the non-terminals be S and X.
* Let the production rules be:

S 2> XaaX

X 2> aX
X 2> bX
X 2> ¢
» The language generated by this CFG is
(ajb)*aa(alb)*.

— The language of all words with at least a double a in
them somewhere.

& :

3/22/2020

1

RE and CFG

* Every language that can be described by a RE can
also be described by a CFG.

* It is rather difficult to write grammar directly.
* FA can be converted into corresponding grammar.

* To convert FA to grammar, the following rules
should be used.

31
1

— For each state “i” of the FA create a non-terminal
symbol “A”.

— If a state “i” has a transition to state “j” on a symbol
“a” .i.e. O(i, a) = j, then introduce a production rule of

the following form.
A; 2 aA;

& 23

RE and CFG

[13%2] (1P

— If state “i” goes to state “4” on input “¢”, then introduce
a production rule of the form.

A 2 A
— If state “i” 1s an accepting state, then introduce a
production rule of the form.
A 2 ¢
— If state “1” is the start state, then A, is the start symbol
(non-terminal) of the grammar.

& 24

3/22/2020

12

Example

a b /N b
—g- e
b €

* Regular expression for the FA is (alb)*a(bb)*.
* Its corresponding grammar will be:

Y= {a, b}

N={A, Ay A3 Ay}

S={A}

The production rules will be:

25

Example

A, 2> aA
A, D> bA,
A, 2> aA,
A, > DA,
A, D> A,
Ay, > bA,
A, > A,
A, 2> ¢

26

3/22/2020

13

3/22/2020

Example

 Consturct FA and grammar for the following RE.

(alb)* bbb (alb)*

& :

Sentential and Sentence form of a Grammar

» A sentential form of a grammar G is any string X
of symbols, such that X; is set of terminals plus
non-terminals or only non-terminals. Such that

X, € ZUN
— If S ® &, where & contains of non-terminal, then we
can say that & is a sentential form of grammar.

* A sentential form of a grammar G that cannot be
further derived or expended .i.e. a sentential form
of a grammar G that consists of terminal symbols
only is called sentence form of grammar.

— If w € L(G) and S ® w, where w is denotes the string
contain only terminals symbols then w is called a

sentence.
ﬁ ;

14

Types of Derivation

» Replacing of a non-terminal in the current state
with its corresponding production rule in the
grammar in order to obtained the required string
is called derivation.

* Two types of derivation.
— Left most derivation.
— Right most derivation.

& :

Types of Derivation

e Left-most Derivation.

— The derivation in which only the left-most non-
terminal in any sentential form is expanded at each step
is called left most derivation.

* Right-most Derivation.

— The derivation in which only the right-most non-
terminal in any sentential form is expanded at each step
is called left most derivation.

& :

3/22/2020

15

Example

 Consider the following grammar.

E - E+T
E - T
T - T*F
T - F
F - (E)
F 2> a

* No derive (a + a) by using both left-most and
right-most derivations.

ay

31

Using Right-most Derivation

(E)

(E+T)
(E+F)
(E+a)
(T+a)
(F+a)
(ata)

E

v ¥

N2 2\ 20\ 2\ 2

32

3/22/2020

16

Using Left-most Derivation

(E)

(E+T)
(T+T)
(F+T)
(a+T)
(a+T)
(ata)

E

vV

N2 2N 2N 2

ay

33

Example

» Derive the string (a+a * a) by using the
grammar stated in the previous slides by using
both left-most and right-most derivation.

ay

34

3/22/2020

17

Backus-Naur Form

BNF stands for Backus-Naur Form or Backus Normal Form.
A meta language is a language that is used to describe another
language.

BNF is a meta language (formal notations) for programming
languages syntax.

A production is a rule relating to a pair of strings, say & and f3,
specifying how one may be transformed into the other. This may be
denoted

a > P.
For simple theoretical grammars, upper case letters are used for non-
terminals and lower case letters are used for terminals.

For more realistic grammars, such as those used to specify
programming languages, the most common way of specifying
productions is to use the notations invented by Backus commonly
called BNF.

These notations were first introduced by Backus for describing
ALGOL 58.

These notations were later modified slightly by Peter Naur for the
escription of ALGOL 60.

35

Backus-Naur Form

In BNF:

— A non-terminal and terminal are usually given some
descriptive names.

— Non-terminals symbols are written in angle brackets to
distinguish it from a terminal symbol.

— If there are multiple definitions for the same non-
terminal symbol, then they can be written as single
rule, separated from each by using (|) vertical bar
which means logical OR.

36

3/22/2020

18

Example .\\
G={(N,T,S, D
N = {<sentence> , <qualified noun> , <noun> , <promoun> , <verb> , <adjective> }
T= { the , man , girl , boy , lecturer , he , she , drinks , sleeps ,
mystifies , tall , thin , thirsty } \
8 = <sentence> /
P = | <sentence> —+ the <qualified noun> <verbs (1)
| <pronoun> <verb> (2)
<qualified noun> —F <adjective> <noun> (3) .
<noun> =+ man | girl | boy | lecturer (4, 5,6, 7
<pronoun> —+ he | she (8, 9)
<verbs —+ talks | listens | mystifies (10, 11, 12) >
<adjectives — tall | thin | sleepy (13, 14, 15)]
}
. Derive the “The sleepy boy listens” by using the
above grammar.
nﬁ% ,

Parse Trees

ay

A grammar naturally describe the hierarchical syntactic
structure of the sentences of the language they define.

The hierarchical structure is called Parse Tree, Syntax Tree,
Derivation Tree or Production Tree..

To draw a parse tree for a sentence generated by a grammar:

— We start with the start symbol “S”.

— Every time we used to replace a non-terminal by a string,
we draw downward lines from the non-terminal to each

character (terminal and non-terminal) in the production
rule.

— These replacements are continued until we label the
downward lines with terminal symbols only (leaf nodes).

— Every internal node of a parse tree is labeled with a non-
terminal symbol and leaf nodes are labeled with terminal
symbols.

38

3/22/2020

19

Example

<assign> 2> <id> = <expr>

<id> 2> A|B|C

<expr> 2> <id>+ <expr>
| <id> * <expr>
| (<expr>)
| <id>

» Now to derive and also draw parse tree for the
following expression by using the above grammar.

A=B*(A+C)

» Also draw parse tree for the sentence derived in
slide # 39.

39

Problems of a CFG

» Three types of problems are mainly faced in a
CFG.
— Ambiguity.
— Left Recursion.
— Common Prefixes.

* Three problems must be removed from a CFG,
otherwise the grammar will not work accurately.

ay

40

3/22/2020

20

Ambiguity

* An ambiguous grammar is one that:

— Produces more than one parse trees for the same
sentence.

— Produces more than one leftmost derivations or
rightmost derivations for the same sentence.
» A grammar becomes ambiguous when a single
non-terminal appears twice or more times on the
L.H.S of the production rules in the grammar.

 If more than one parse trees can be produced for a
sentence; then the compiler would not be able to
generate the code uniquely.

ay

M

Example

* Consider the following grammar.
<assign> 2> <id> = <expr>
<id> 2> A|B|C
<expr> 2> <expr>+ <expr>
| <expr>* <expr>
| (<expr>)
| <id>
* Now show that this grammar is ambigous for the
sentence A=B + C * A.

ay

42

3/22/2020

21

Elimination of Ambiguity

 Consider the following grammar.

<if stmt> - if <logic expr> then <stmt>
| if <logic expr> then <stmt> else <stmt>
<stmt> > <if stmt>

* Now to show that this grammar is ambiguous for the following
sentence.

if <logic expr>then if <logic exper> then <stmt> else <stmt>

* Now to eliminate ambiguity from the above grammar, we have to

write the above grammar.
@i 43

Elimination of Ambiguity

» To rewrite unambiguous grammar, we have to
following the following rule.

— The rule for if statement in most languages is that an
else clause, when present, is matched with the nearest
previous unmatched then.

— Therefore, between a then and its matching else, there
cannot be an if statement without an else.

— So for this situation, statements must be distinguished
between those that are matched and those that are
unmatched.

— Where unmatched statements are else — less ifs.

Sy }

3/22/2020

22

3/22/2020

Elimination of Ambiguity

* So the unambiguous grammar will be:

<stmt> = <matched> | <unmatched>

<matched> - if <logic_expr> then <matched> else <matched>
| any non-if statement

<unmatched> > if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

» Now try this out on the previous sentence.

& 45

Left Recursion

» A grammar is said to be left recursive, if it has a a non-
terminal ‘A’ such that there is a derivation

A D> Ad
for some string x.

* When a grammar rule has its L.H.S also appearing at the
beginning of its R.H.S, the rule/grammar is said to be left
recursive.

» For example

S -> Sa

Now, replacing S by Sa we get Saa, then Saaa and then
Saaaa and so on.

* Top-down parsing method cannot handle left-recursive
grammar, so it has to be eliminated.

& .

23

Left — Recursive Removal

 Consider the following grammar.
A 2> A4|P

This is a left recursive grammar and it can be
removed by replacing it with the following
productions.

A > pA
A > aA e

ay

47

Example

* Consider the grammar.
S > Ab|b
A 2> Ac|Sd|e
* This grammar can be expanded as:
S > Ab|b
A > Ac|Abd|bd|e
» After removing left — recursion we get.
S > Ab|b
A > bdA’|eA’
Al > cA/|bdA’|¢

ay

48

3/22/2020

24

Example

 Consider the following left — recursive grammar.

E > E+T | T
* In this case
+T =4
T =P
* By eliminating left — recursion, it can be written
as:
E > TFE
E > +TE|e¢

ay

49

Common Prefixes

* When a grammar has two or more productions
with the same non-terminal of the L.H.S and the
same prefixes on their R.H.S but different
suffixes.

* Consider the following grammar:
A 2> ap,
A 2> 4B,

— So, it is not clear that which of the two alternative
productions is to be used to expand non — terminal ‘A’.

* The removal of common prefixes is called left
factoring,

50

3/22/2020

25

3/22/2020

Common Prefixes Removal

A 2> 4p
A 2> 4ap,

 After left factoring, it will be as:
A > aA

A > BB

ay

 Consider the following grammar:

51

Example

S - iEtS|iEtSeS |a
E 2> b
» After left factoring, we get:
S > iEtSY]a
S > eS¢
E 2> b

ay

* Consider the following grammar:

52

26

Operator Precedence

Grammar is used to create parse tree for a sentence

Therefore, parse tree is used to determine the
meaning of the sentence.

In case of mathematical expression:

— An operator in an arithmetic expression that is generated
lower in the parse tree has precedence over an operator
produced higher up in the tree.

If we consider the grammar shown in slide # 44 and
create parse trees for the given expressions.

— We will find that in one tree the multiplication operator
is generated lower in the tree, indicating that it has
precedence over the addition operator in the expression.

— The second parse tree indicates just the opposite.

53

Operator Precedence

Therefore an ambiguous grammar can also create the
problem of operator precedence.

To maintain the operator precedence, we have to
restructure the grammar.

We have to write the grammar in such away so that can
easily reflect the operator precedence.

In case of the grammar shown on slide # 44.

— A grammar can be written to separate the addition and
multiplication operators so they are consistently in a higher-to-
lower ordering, respectively, in the parse tree.

— This ordering can be maintained regardless of the order in which
the operators appear in an expression.

— The correct ordering is specified by using separate rules for the
operands of the operator that have different precedence.

— This requires additional non-terminals and some new rules.

54

3/22/2020

27

3/22/2020

Operator Precedence

<assign> > <id> = <expr>
<id> 2> A|B|C
<expr> 2> <term> + <expr>
| <term> - <expr>
| <term>
<term> —> < factor> * <term >
| <factor> /<term>
| <factor>
<factor> = (<expr>)
| <id>

& :

The Total — Language Tree

* A total — language tree shows the generation of all
the words in the language of CFG simultaneously in
one big (possibly infinite) tree.

* For a given CFG, total — language tree is:

— Start with the start symbol S as its root and whose nodes
are working strings of terminals and non-terminals.

— The descendent of each node are all the possible results of
applying every production of the non-terminals in the
node, one at a time.

— A string of all terminals is the terminal node in the tree.

— The resultant tree is called the total language tree of the
CFG.

& 56

28

The Total — Language Tree

Example : For the CFG
S > aa| bX | aXX
X > ab|b

The total language tree is:

{/\“

AV ANYA /\

agbab aabb abab abb aabab abab aabb abl

This total language has only seven different words.
Four of its words { abb, aabb, abab, aabab } have two different possible

erivations.
57
Class Work
. Find a CFG for each of the languages defined by the following regular
expressions.
1. aa*bb*
2. (alb)* a (ab)* a (a]b)*
3. b*a(ab)* ab*
. Consider the CFG
S > aX
X > aX|bX|e
What is the language this CFG generates.
. Consider the CFG
S > XaXaX
X > aX | bX|e
What is the language this CFG generates.
. Consider the CFG
S —>aS|bb
Prove that this grammar generates the language defined by the RE a*bb.
58

3/22/2020

29

* End of Chapter # 4

59

3/22/2020

30

