
3/22/2020

1

1

Chapter # Chapter # 44
Context Free Context Free Grammar (CFG)Grammar (CFG)
Chapter # Chapter # 44
Context Free Context Free Grammar (CFG)Grammar (CFG)

Dr. Dr. ShaukatShaukat AliAli

Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

2

Introduction

• A grammar is a set of rules by which the valid
sentences in a language are constructed.

• Every language either that is natural language or
artificial language have a certain grammar that
helps in constructing the valid sentences in that
language.

• In natural languages, invalid sentences violating
the grammatical rules can be constructed and still
they are understandable.

• But, this in not true in case of computer
programming languages.

3/22/2020

2

3

Example

• Some of the rules of English grammar are these:
1. A sentence can be a subject followed by a predicate.
2. A subject can be a noun-phrase.
3. A noun-phrase can be an adjective followed by a noun-

phrase.
4. A noun-phrase can be an article followed by a noun-phrase.
5. A noun-phrase can be a noun.
6. A predicate can be a verb followed by a noun-phrase.
7. A noun can be : apple, bear, cat, dog.
8. A verb can be : eats, follows, gets, hugs.
9. A adjective can be : itchy, jumpy.
10. An article can be : a, an, the.
11. A predicate can be a verb.

4

Example

• Now if have to form the sentence:
The itchy bear hugs the jumpy dog.

• The sequence of application of the grammar rules to
generated the above sentence is as follows:

1. Sentence →subject predicate Rule 1
2. →noun-phrase predicate Rule 2
3. →noun-phrase verb noun-phrase Rule 6
4. →article noun-phrase verb noun-phrase Rule 4
5. →article adjective noun-phrase verb noun-phrase Rule 3
6. →article adjective noun verb noun-phrase Rule 5
7. →article adjective noun verb article noun-phrase Rule 4
8. → article adjective noun verb article adjective noun-phrase Rule 3
9. → article adjective noun verb article adjective noun Rule 5
10. → The adjective noun verb article adjective noun Rule 10
11. → The itchy noun verb article adjective noun Rule 9

3/22/2020

3

5

Example
12. → The itchy bear verb article adjective noun Rule 7
13. → The itchy bear hugs article adjective noun Rule 8
14. → The itchy bear hugs the adjective noun Rule 10
15. → The itchy bear hugs the jumpy noun Rule 9
16. → The itchy bear hugs the jumpy dog Rule 7

• The arrows indicates that a substitution was made according to the
rules of grammar stated above.

• What we did:
– We started with the initial symbol sentence.
– We then applied the rules for producing the given sentence.
– We then replaced the grammar words with the vocabulary words and

hence get the required sentence.

• The words that cannot be replaced by anything are called terminal .
• The words that can be replaced with by other words are called non-

terminals.
• The sequence of application of the rules that produces the finished

string of terminals from the starting symbol is called a derivation.

6

Syntax and Semantics

• Syntax is concerned with the grammatical
structure of the sentences of the language.
– Grammatical structure means the set of rules that are

needed to construct valid sentences in the language.

• Semantics is concerned with the meaning of the
sentence generated as a result of application of the
grammatical rules.

• Sometimes, a sentence will be syntactically
correct but semantically it will be incorrect.

• For example in the previous grammar we have:
– Sentence  noun predicate.
– Predicate  verb.

3/22/2020

4

7

Syntax and Semantics

• By using this grammar, we can construct
sentences like:
– Birds sings.

– Wednesday sings.

– Coal mines sings.

• The first sentence is both synthetically and
semantically correct.

• But, the last two are synthetically correct but
semantically incorrect.

• For a sentence to be valid, it should be both
synthetically and semantically correct.

8

Example

• Lets write grammar for valid arithmetic expressions.
– Start  AE

– AE  (AE + AE)

– AE  (AE – AE)

– AE  (AE * AE)

– AE  (AE / AE)

– AE  (AE ** AE)

– AE  (AE)

– AE  – (AE)

– AE  Any-Number

– Any-Number  First-Digit

– First-Digit  First-Digit Other-Digit

– First-Digit  0 1 2 3 4 5 6 7 8 9

– Other-Digit  0 1 2 3 4 5 6 7 8 9

• Now using this
grammar derive the
expression:

1. (4-5)

2. ((5+4)*4)

3. ((9+5)*(8+2))

3/22/2020

5

9

Grammar

• A grammar can be represented by four tuple:

G = (Σ, N, S, P)
– Σ is a finite non-empty set called alphabets.

• The elements of Σ is called terminals and usually represented by
lower-case letters .i.e. a, b, c etc.

– N is a finite non-empty set of symbols such that N ∩ Σ =Ǿ.
• The elements of N is called non-terminals are represented by

uppercase letters .i.e. A, B, C etc.

– S is a distinguished element of N called start symbol such
that S € N.

– P is the set of production rules or substitutions rules.
• A production rule is of the form:

Non-Terminal  finite set of Terminals and Non-Terminals.

10

Types of Grammar

• There are four types of grammars and is
commonly called Chomsky hierarchy.
– Type – 0 grammar.

– Type – 1 grammar.

– Type – 2 grammar.

– Type – 3 grammar.

3/22/2020

6

11

Type -0 grammar

• Type – 0 grammar is also called phrase structure grammar
or un-restricted grammar.

• It is of four tuple (Σ, N, S, P).

• A production rule in an un-restricted grammar is of the
form:

U → V
– Where U and V are strings of terminals, non-terminals or both of

them.

– Only restriction is that U ≠ ε.

– These production allows for a completely replacement of one string
‘U’ by another ‘V’.

• The language generated by type-0 grammar is called type-0
language.

12

Example

• Let
Σ = {a, c, d}

N = {A, B, C}

S = {A}

and P is:

A → aBCc

aB → cad

Bc → aBa

BCc → Bcc

Cc → ε

Now to derive cad:

1. S → aBCc

2. aBCc → cadCc

3. cadCc → cad

Now to derive acadac

1. S → aBCc

2. aBCc →aBcc

3. aBcc → aaBac

4. aaBac → acadac

3/22/2020

7

13

Type-1 grammar

• It is called context-sensitive grammar.

• It is also of four tuple (Σ, N, S, P).

• A production rule of the following form:
ά A β → ά σ β

– Where A is a non-terminal and σ ≠ ε is any non-empty
string of terminals or non-terminals or both.

– ά and β may either terminals, non-terminals or both.

– The idea is that we may replace the non-terminal A by
σ but only if A is surrounded by in the context of ά
and β.

14

Type – 2 grammar

• It is also called context-free grammar (CFG).

• It is also of four tuple (Σ, N, S, P).

• A production rule of the following form:
A → σ

– Where A is a single non-terminal symbol and σ is any
string of terminals or non-terminals or both.

• This is the most suitable grammar for computer
languages and almost all computer programming
languages are CFG.

3/22/2020

8

15

Type – 3 grammar

• It is also called regular grammar or linear
grammar.

• It is also of four tuple (Σ, N, S, P).

• In this type of grammar, we replace a single non-
terminal with either a single terminal, a single
terminal with a single non-terminal or ε.

• There are two types of this grammar.
– Right linear or Right regular.

– Left linear or Left regular.

16

Right Linear

• A grammar G is said to be of the right linear if
every one of its productions has one of the
following form.

A → ε

A → aB

A → a

• Here A, B are non-terminals and ‘a’ is terminal.

3/22/2020

9

17

Left Linear

• A grammar G is said to be of the left linear if
every one of its productions has one of the
following form.

A → ε

A → Ba

A → a

• Here A, B are non-terminals and ‘a’ is terminal.

18

Context-free Language

• A language generated by a CFG is the set of all
strings of terminals that can be produced from the
start symbol S using the productions as
substitutions.

• A language generated by a CFG is called context-
free language.
– It can also be said as the language defined by CFG or

the language derived from the CFG or the language
produced by the CFG.

• The language defined by a CFG can also be
describe by a regular expression.
– This can also be said as the language defined by a RE

can also be defined by a CFG.

3/22/2020

10

19

Example
• Let the only terminal be a.
• Let the production be:

Prod 1 S  aS
Prod 2 S  ε

• If we apply prod 1 six times and then apply prod 2, we
generate the following:

S  aS
 aaS
 aaaS
 aaaaS
 aaaaaS
 aaaaaaS
 aaaaaa

• This is a derivation of a6 in this CFG.

20

Example

• The string an comes from n times application of
prod 1 followed by one application of prod 2.

• If we apply prod 2 with out prod 1, we find that
the null string is itself in the language of this
CFG.

• Since the only terminal is a it is clear that no
words outside of a* can possibly be generated.

• The language generated by this CFG is exactly a*.

3/22/2020

11

21

Example

• Let the terminal be a and b.
• Let the non-terminals be S, X and Y.
• Let the production rules be:

S  X
S  Y
X  ε
Y  aY
Y  bY
Y  a
Y  b

• The language generated by this CFG is (a|b)*.

22

Example

• Let the terminal be a and b.
• Let the non-terminals be S and X.
• Let the production rules be:

S  XaaX
X  aX
X  bX
X  ε

• The language generated by this CFG is
(a|b)*aa(a|b)*.
– The language of all words with at least a double a in

them somewhere.

3/22/2020

12

23

RE and CFG

• Every language that can be described by a RE can
also be described by a CFG.

• It is rather difficult to write grammar directly.
• FA can be converted into corresponding grammar.
• To convert FA to grammar, the following rules

should be used.
– For each state “i” of the FA create a non-terminal

symbol “A”.
– If a state “i” has a transition to state “j” on a symbol

“a” .i.e. (i, a) = j, then introduce a production rule of
the following form.

Ai  aAj

24

RE and CFG

– If state “i” goes to state “j” on input “ε”, then introduce
a production rule of the form.

Ai  Aj

– If state “i” is an accepting state, then introduce a
production rule of the form.

Ai  ε

– If state “i” is the start state, then Ai is the start symbol
(non-terminal) of the grammar.

3/22/2020

13

25

Example

• Regular expression for the FA is (a|b)*a(bb)*.
• Its corresponding grammar will be:

Σ = {a, b}
N = {A1, A2, A3, A4}
S = {A1}
The production rules will be:

1 2 3 4

a

a

b

b b

ε

ε

26

Example

A1  aA1

A1  bA1

A1  aA2

A2  bA3

A2  A4

A3  bA4

A4  A2

A4  ε

3/22/2020

14

27

Example

• Consturct FA and grammar for the following RE.

(a|b)* bbb (a|b)*

28

Sentential and Sentence form of a Grammar

• A sentential form of a grammar G is any string Xi
of symbols, such that Xi is set of terminals plus
non-terminals or only non-terminals. Such that

Xi Є Σ U N
– If S  ά, where ά contains of non-terminal, then we

can say that ά is a sentential form of grammar.

• A sentential form of a grammar G that cannot be
further derived or expended .i.e. a sentential form
of a grammar G that consists of terminal symbols
only is called sentence form of grammar.
– If w Є L(G) and S  w, where w is denotes the string

contain only terminals symbols then w is called a
sentence.

*

*

3/22/2020

15

29

Types of Derivation

• Replacing of a non-terminal in the current state
with its corresponding production rule in the
grammar in order to obtained the required string
is called derivation.

• Two types of derivation.
– Left most derivation.

– Right most derivation.

30

Types of Derivation

• Left-most Derivation.
– The derivation in which only the left-most non-

terminal in any sentential form is expanded at each step
is called left most derivation.

• Right-most Derivation.
– The derivation in which only the right-most non-

terminal in any sentential form is expanded at each step
is called left most derivation.

3/22/2020

16

31

Example

• Consider the following grammar.

E  E + T

E  T

T  T * F

T  F

F  (E)

F  a

• No derive (a + a) by using both left-most and
right-most derivations.

32

Using Right-most Derivation

E  (E)

 (E + T)

 (E + F)

 (E + a)

 (T + a)

 (F + a)

 (a + a)

3/22/2020

17

33

Using Left-most Derivation

E  (E)

 (E + T)

 (T + T)

 (F + T)

 (a + T)

 (a + T)

 (a + a)

34

Example

• Derive the string (a + a * a) by using the
grammar stated in the previous slides by using
both left-most and right-most derivation.

3/22/2020

18

35

Backus-Naur Form
• BNF stands for Backus-Naur Form or Backus Normal Form.
• A meta language is a language that is used to describe another

language.
• BNF is a meta language (formal notations) for programming

languages syntax.
• A production is a rule relating to a pair of strings, say ά and β,

specifying how one may be transformed into the other. This may be
denoted

ά  β.
• For simple theoretical grammars, upper case letters are used for non-

terminals and lower case letters are used for terminals.
• For more realistic grammars, such as those used to specify

programming languages, the most common way of specifying
productions is to use the notations invented by Backus commonly
called BNF.

• These notations were first introduced by Backus for describing
ALGOL 58.

• These notations were later modified slightly by Peter Naur for the
description of ALGOL 60.

36

Backus-Naur Form

• In BNF:
– A non-terminal and terminal are usually given some

descriptive names.

– Non-terminals symbols are written in angle brackets to
distinguish it from a terminal symbol.

– If there are multiple definitions for the same non-
terminal symbol, then they can be written as single
rule, separated from each by using (|) vertical bar
which means logical OR.

3/22/2020

19

37

Example

• Derive the “The sleepy boy listens” by using the
above grammar.

38

Parse Trees
• A grammar naturally describe the hierarchical syntactic

structure of the sentences of the language they define.
• The hierarchical structure is called Parse Tree, Syntax Tree,

Derivation Tree or Production Tree..
• To draw a parse tree for a sentence generated by a grammar:

– We start with the start symbol “S”.
– Every time we used to replace a non-terminal by a string,

we draw downward lines from the non-terminal to each
character (terminal and non-terminal) in the production
rule.

– These replacements are continued until we label the
downward lines with terminal symbols only (leaf nodes).

– Every internal node of a parse tree is labeled with a non-
terminal symbol and leaf nodes are labeled with terminal
symbols.

3/22/2020

20

39

Example

<assign>  <id> = <expr>
<id>  A | B | C
<expr>  <id> + <expr>

| <id> * <expr>
| (<expr>)
| <id>

• Now to derive and also draw parse tree for the
following expression by using the above grammar.

A = B * (A + C)
• Also draw parse tree for the sentence derived in

slide # 39.

40

Problems of a CFG

• Three types of problems are mainly faced in a
CFG.
– Ambiguity.

– Left Recursion.

– Common Prefixes.

• Three problems must be removed from a CFG,
otherwise the grammar will not work accurately.

3/22/2020

21

41

Ambiguity

• An ambiguous grammar is one that:
– Produces more than one parse trees for the same

sentence.

– Produces more than one leftmost derivations or
rightmost derivations for the same sentence.

• A grammar becomes ambiguous when a single
non-terminal appears twice or more times on the
L.H.S of the production rules in the grammar.

• If more than one parse trees can be produced for a
sentence; then the compiler would not be able to
generate the code uniquely.

42

Example

• Consider the following grammar.

<assign>  <id> = <expr>

<id>  A | B | C

<expr>  <expr> + <expr>

| <expr> * <expr>

| (<expr>)

| <id>

• Now show that this grammar is ambigous for the
sentence A = B + C * A.

3/22/2020

22

43

Elimination of Ambiguity

• Consider the following grammar.

<if_stmt>  if <logic_expr> then <stmt>

| if <logic_expr> then <stmt> else <stmt>

<stmt>  <if_stmt>

• Now to show that this grammar is ambiguous for the following
sentence.

if <logic_expr> then if <logic_exper> then <stmt> else <stmt>

• Now to eliminate ambiguity from the above grammar, we have to
rewrite the above grammar.

44

Elimination of Ambiguity

• To rewrite unambiguous grammar, we have to
following the following rule.
– The rule for if statement in most languages is that an

else clause, when present, is matched with the nearest
previous unmatched then.

– Therefore, between a then and its matching else, there
cannot be an if statement without an else.

– So for this situation, statements must be distinguished
between those that are matched and those that are
unmatched.

– Where unmatched statements are else – less ifs.

3/22/2020

23

45

Elimination of Ambiguity

• So the unambiguous grammar will be:

<stmt>  <matched> | <unmatched>

<matched>  if <logic_expr> then <matched> else <matched>

| any non-if statement

<unmatched>  if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

• Now try this out on the previous sentence.

46

Left Recursion

• A grammar is said to be left recursive, if it has a a non-
terminal ‘A’ such that there is a derivation

A  Aά
for some string x.

• When a grammar rule has its L.H.S also appearing at the
beginning of its R.H.S, the rule/grammar is said to be left
recursive.

• For example
S  Sa

Now, replacing S by Sa we get Saa, then Saaa and then
Saaaa and so on.

• Top-down parsing method cannot handle left-recursive
grammar, so it has to be eliminated.

*

3/22/2020

24

47

Left – Recursive Removal

• Consider the following grammar.

A  Aά | β

This is a left recursive grammar and it can be
removed by replacing it with the following
productions.

A  βA/

A/  άA/ | ε

48

Example

• Consider the grammar.

S  Ab | b

A  Ac | Sd | ε

• This grammar can be expanded as:

S  Ab | b

A  Ac | Abd | bd | ε

• After removing left – recursion we get.

S  Ab | b

A  bdA/ | εA/

A/  cA/ | bdA/ | ε

3/22/2020

25

49

Example

• Consider the following left – recursive grammar.

E  E + T | T

• In this case

+ T = ά

T = β

• By eliminating left – recursion, it can be written
as:

E  TE/

E/  +TE/ | ε

50

Common Prefixes

• When a grammar has two or more productions
with the same non-terminal of the L.H.S and the
same prefixes on their R.H.S but different
suffixes.

• Consider the following grammar:

A  άβ1

A  άβ2

– So, it is not clear that which of the two alternative
productions is to be used to expand non – terminal ‘A’.

• The removal of common prefixes is called left
factoring,

3/22/2020

26

51

Common Prefixes Removal

• Consider the following grammar:

A  άβ1

A  άβ2

• After left factoring, it will be as:

A  άA/

A/  β1 | β2

52

Example

• Consider the following grammar:

S  iEtS | iEtSeS | a

E  b

• After left factoring, we get:

S  iEtSS/ | a

S/  eS | ε

E  b

3/22/2020

27

53

Operator Precedence

• Grammar is used to create parse tree for a sentence.
• Therefore, parse tree is used to determine the

meaning of the sentence.
• In case of mathematical expression:

– An operator in an arithmetic expression that is generated
lower in the parse tree has precedence over an operator
produced higher up in the tree.

• If we consider the grammar shown in slide # 44 and
create parse trees for the given expressions.
– We will find that in one tree the multiplication operator

is generated lower in the tree, indicating that it has
precedence over the addition operator in the expression.

– The second parse tree indicates just the opposite.

54

Operator Precedence

• Therefore an ambiguous grammar can also create the
problem of operator precedence.

• To maintain the operator precedence, we have to
restructure the grammar.

• We have to write the grammar in such away so that can
easily reflect the operator precedence.

• In case of the grammar shown on slide # 44.
– A grammar can be written to separate the addition and

multiplication operators so they are consistently in a higher-to-
lower ordering, respectively, in the parse tree.

– This ordering can be maintained regardless of the order in which
the operators appear in an expression.

– The correct ordering is specified by using separate rules for the
operands of the operator that have different precedence.

– This requires additional non-terminals and some new rules.

3/22/2020

28

55

Operator Precedence

<assign>  <id> = <expr>

<id>  A | B | C

<expr>  <term> + <expr>

| <term> - <expr>

| <term>

<term>  < factor > * <term >

| < factor > / <term>

| <factor>

<factor>  (<expr>)

| <id>

56

The Total – Language Tree

• A total – language tree shows the generation of all
the words in the language of CFG simultaneously in
one big (possibly infinite) tree.

• For a given CFG, total – language tree is:
– Start with the start symbol S as its root and whose nodes

are working strings of terminals and non-terminals.

– The descendent of each node are all the possible results of
applying every production of the non-terminals in the
node, one at a time.

– A string of all terminals is the terminal node in the tree.

– The resultant tree is called the total language tree of the
CFG.

3/22/2020

29

57

The Total – Language Tree
• Example : For the CFG

S  aa | bX | aXX
X  ab | b

• The total language tree is:

• This total language has only seven different words.
• Four of its words { abb, aabb, abab, aabab } have two different possible

derivations.

58

Class Work
• Find a CFG for each of the languages defined by the following regular

expressions.
1. aa*bb*
2. (a|b)* a (a|b)* a (a|b)*
3. b* a (a|b)* a b*

• Consider the CFG

S  aX

X  aX | bX | ε

What is the language this CFG generates.
• Consider the CFG

S  XaXaX
X  aX | bX | ε

What is the language this CFG generates.
• Consider the CFG

S  aS | bb
Prove that this grammar generates the language defined by the RE a*bb.

3/22/2020

30

• End of Chapter # 4

59

